Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(2): e24218, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38312607

RESUMO

In this work, pebbles of higher specific heat than the conventional absorber materials like aluminium or copper are proposed as a absorber in the solar flat plate collector. The proposed collector are integrated into the building design and constructed with masonry. Tests were conducted by varying the operating parameters which influence its performance, like the flow rate of the heat-absorbing medium, and the tilt of the collector using both coated and uncoated pebbles. The maximum temperature difference that could be measured for a conventional absorber was approximately 8 °C for a flow rate of 0.6 L/min. While for a coated and uncoated absorber, it was 7 °C and 5.5 °C respectively. This difference decreased with an increase in flow rates from 0.6 L/min to 1.2 L/min. For all the flow rates, it was observed that the average difference in efficiency between the coated and the conventional absorber collector is 5.82 %, while the difference between the coated and uncoated absorber collector is 15.68 %. Thus, it is very much evident that by replacing the conventional absorber with the proposed coated pebble absorber, the overall loss in efficiency is just 5.82 %, but the advantages are enormous. Along with the experimental study, numerical analysis was also carried out with CFD modeling. The numerical results agreed well with experimental results with the least error. Therefore, CFD simulation can be further used to optimize the design of the collector.

2.
Heliyon ; 10(3): e25407, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38371991

RESUMO

Integration of photovoltaic (PV) systems, desalination technologies, and Artificial Intelligence (AI) combined with Machine Learning (ML) has introduced a new era of remarkable research and innovation. This review article thoroughly examines the recent advancements in the field, focusing on the interplay between PV systems and water desalination within the framework of AI and ML applications, along with it analyses current research to identify significant patterns, obstacles, and prospects in this interdisciplinary field. Furthermore, review examines the incorporation of AI and ML methods in improving the performance of PV systems. This includes raising their efficiency, implementing predictive maintenance strategies, and enabling real-time monitoring. It also explores the transformative influence of intelligent algorithms on desalination techniques, specifically addressing concerns pertaining to energy usage, scalability, and environmental sustainability. This article provides a thorough analysis of the current literature, identifying areas where research is lacking and suggesting potential future avenues for investigation. These advancements have resulted in increased efficiency, decreased expenses, and improved sustainability of PV system. By utilizing artificial intelligence technologies, freshwater productivity can increase by 10 % and efficiency. This review offers significant and informative perspectives for researchers, engineers, and policymakers involved in renewable energy and water technology. It sheds light on the latest advancements in photovoltaic systems and desalination, which are facilitated by AI and ML. The review aims to guide towards a more sustainable and technologically advanced future.

3.
Heliyon ; 9(2): e13167, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36747538

RESUMO

Solar radiation is free, and very useful input for most sectors such as heat, health, tourism, agriculture, and energy production, and it plays a critical role in the sustainability of biological, and chemical processes in nature. In this framework, the knowledge of solar radiation data or estimating it as accurately as possible is vital to get the maximum benefit from the sun. From this point of view, many sectors have revised their future investments/plans to enhance their profit margins for sustainable development according to the knowledge/estimation of solar radiation. This case has noteworthy attracted the attention of researchers for the estimation of solar radiation with low errors. Accordingly, it is noticed that various types of models have been continuously developed in the literature. The present review paper has mainly centered on the solar radiation works estimated by the empirical models, time series, artificial intelligence algorithms, and hybrid models. In general, these models have needed the atmospheric, geographic, climatic, and historical solar radiation data of a given region for the estimation of solar radiation. It is seen from the literature review that each model has its advantages and disadvantages in the estimation of solar radiation, and a model that gives the best results for one region may give the worst results for the other region. Furthermore, it is noticed that an input parameter that strongly improves the performance success of the models for a region may worsen the performance success of another region. In this direction, the estimation of solar radiation has been separately detailed in terms of empirical models, time series, artificial intelligence algorithms, and hybrid algorithms. Accordingly, the research gaps, challenges, and future directions for the estimation of solar radiation have been drawn in the present study. In the results, it is well-observed that the hybrid models have exhibited more accurate and reliable results in most studies due to their ability to merge between different models for the benefit of the advantages of each model, but the empirical models have come to the fore in terms of ease of use, and low computational costs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA